USING MULTIPLE TRACERS TO DETERMINE WASTEWATER CONTRIBUTIONS TO GROUNDWATER IN SPRINGS CONTRIBUTING AREAS

ANDY CANION¹, KATHERINE M. RANSOM² BRIAN G. KATZ³

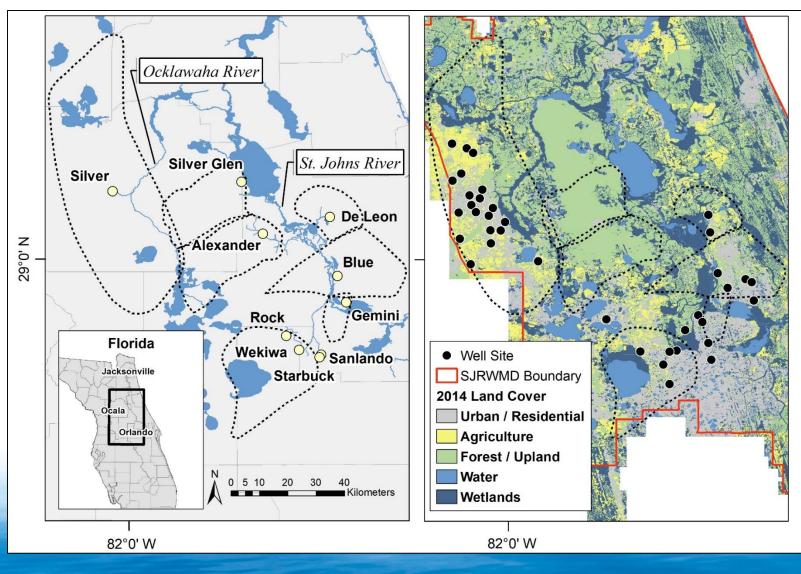
¹ ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, PALATKA, FL ² UNIVERSITY OF CALIFORNIA, DAVIS, CA ³ FLORIDA DEPT. OF ENVIRONMENTAL PROTECTION, TALLAHASSEE, FL

2020 UF WATER INSTITUTE SYMPOSIUM

REDUCING NITROGEN LOADS TO SPRINGS

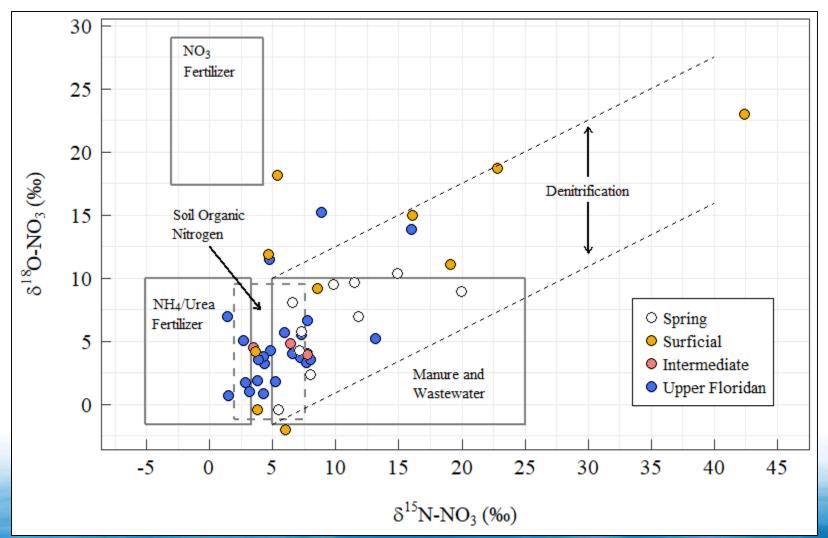
Numeric Nutrient Criteria of 0.35 mg L⁻¹ NO₃ - N

Basin Management Action Plans (BMAPS)


Assess sources of nitrogen

Nitrogen Source Inventory and Loading Tool (NSILT)

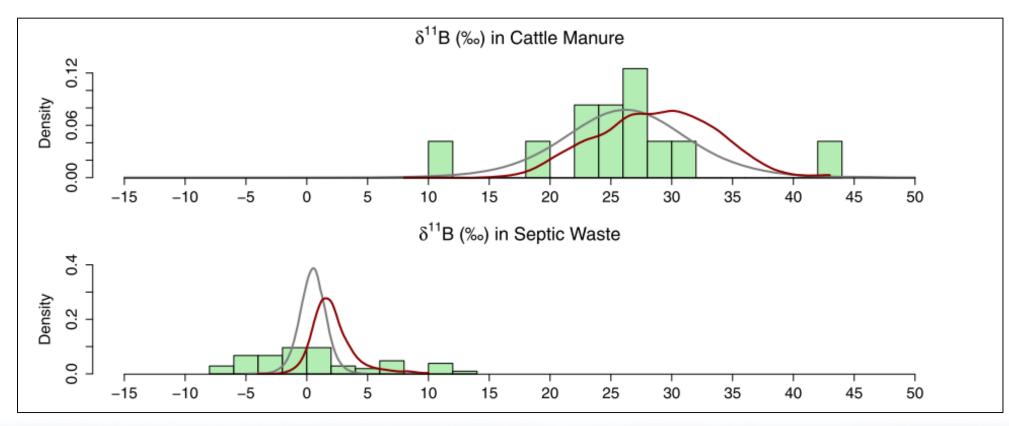
Groundwater monitoring


Develop projects to reduce aquifer N loads

SAMPLING PROGRAM

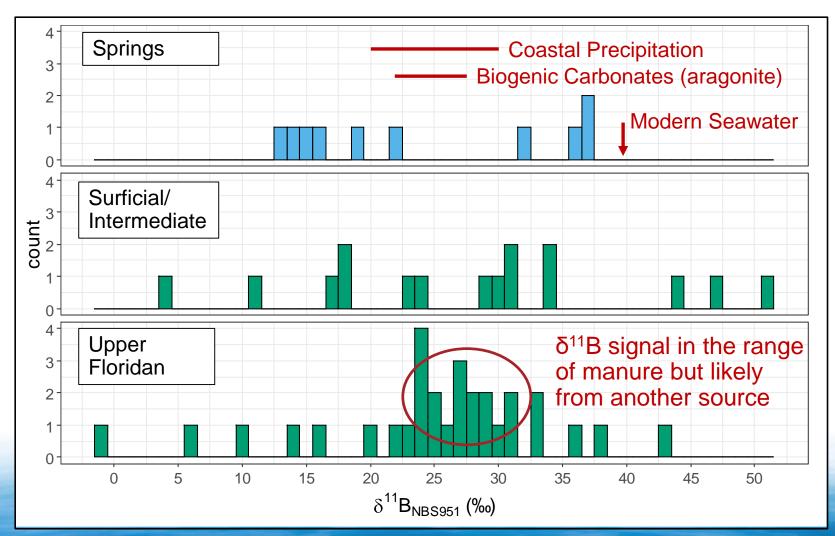
- Standard water quality
- Nitrate isotopes
- Boron concentration
 and stable isotope
- Sucralose
- Iohexol

NITRATE STABLE ISOTOPES

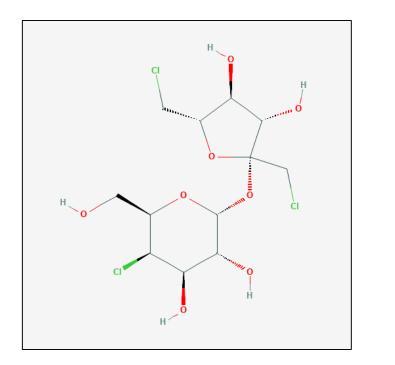


DENITRIFICATION INFLUENCE

Spring	NO ₃ -N (mg L ⁻¹)	Percent of Nitrogen Remaining †	δ ¹⁵ N-NO ₃ (‰)	δ ¹⁸ O-NO ₃ (‰)	
Gemini Springs	1.40	50 - 65 %	7.09	4.28	
Rock Springs	1.28	43 %	6.60	8.08	Denitrification limits
Silver Springs	1.24	50 - 93 %	7.30	5.74	
Wekiwa Springs	1.12	30 %	11.49	9.67	interpretation of
Ponce De Leon Springs	0.81	21 - 31 %	9.80	9.54	nutrient sources
Blue Spring	0.79	13 %	11.82	6.95	without associated
Sanlando Spring	0.62	10 %	14.88	10.39	
Starbuck Spring	0.39	10 %	19.99	8.91	N ₂ gas
Silver Glen Springs	0.05	11 %	5.43	-0.39	measurements
Alexander Springs	0.04	12 %	8.01	2.34	

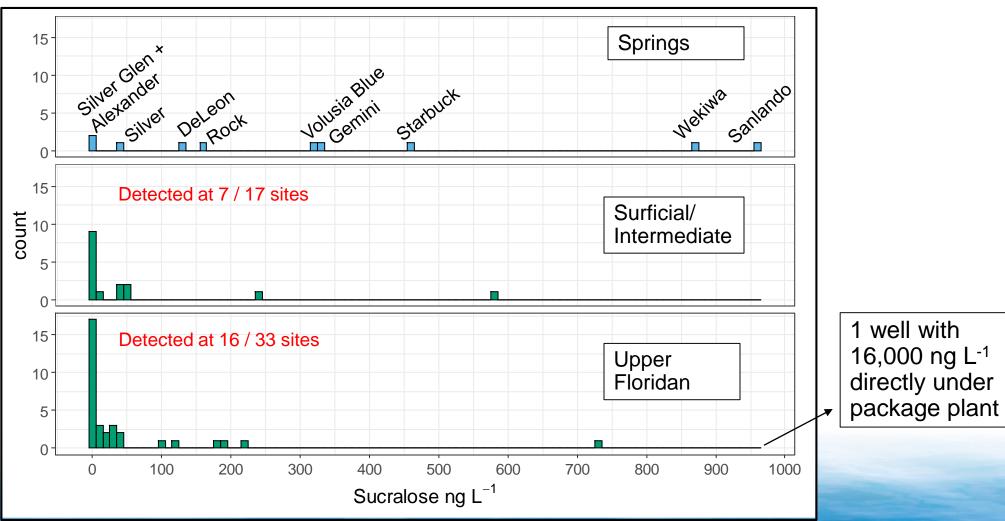

⁺ Data from Heffernan et al. (2012)

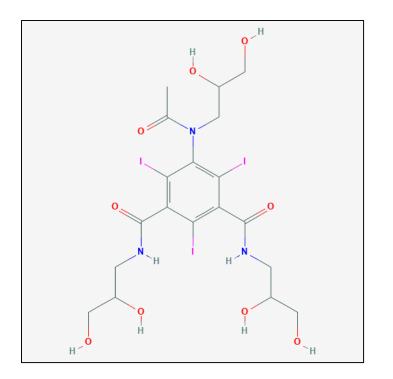
BORON STABLE ISOTOPE


Modified after Ransom et al. 2016

BORON STABLE ISOTOPE

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

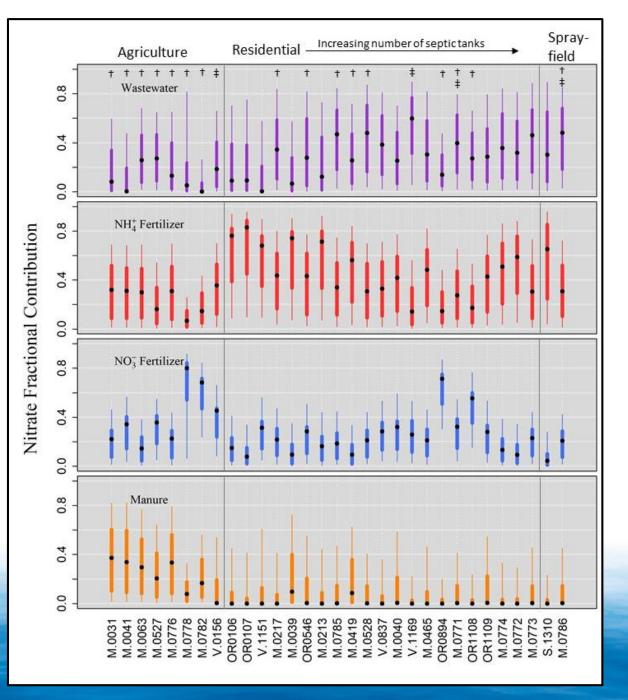

SUCRALOSE


- Artificial sweetener
- Half Life of ~1 year

Reuse systems: 18,000 – 79,000 ng L⁻¹ Septic Tanks: 12,000 – 80,000 ng L⁻¹ FL surface water: 0 – 27,000 ng L⁻¹ FL unconfined aquifers: 0 – 3,700 ng L⁻¹ (Silvanima et al. 2018)

SUCRALOSE

IOHEXOL



- X-ray contrast agent
- Photolabile
- May be readily biodegradable

Reuse systems: 3,100 – 11,000 ng L⁻¹ Septic Tanks: <10 ng L⁻¹ Not detected in current study

BAYESIAN MIXING MODEL

- Accounts for distribution of source isotope values
- Prior contributions based on land use and septic tank density
- Use nitrate stable isotope data to update contributions

CONCLUSIONS

- Multiple tracers provide weight of evidence for wastewater contributions to groundwater and springs.
- Boron isotope may have limited application in FL
- Still difficult to discriminate between manure and septic/wastewater under mixed land use
- Absence of sucralose should not be used to rule-out wastewater sources
- Fertilizer sources still significant contribution in many areas – How much is from legacy loading?

REFERENCES

- Badruzzaman, M., Pinzon, J., Oppenheimer, J., Jacangelo, J.G., 2012. Sources of nutrients impacting surface waters in Florida: A review. J. Environ. Mgmt. 109, 80–92.
- Canion, A., Ransom, K.M., Katz, B.G., 2020. Discrimination of nitrogen sources in karst spring contributing areas using a Bayesian isotope mixing model and wastewater tracers. Environmental & Engineering Geoscience. *In press.*
- Eller, K.T., Katz, B.G., 2017. Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs. J. Environ. Mgmt. 196, 702–709.
- Heffernan, J.B., Albertin, A.R., Fork, M.L., Katz, B.G., Cohen, M.J., 2012. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer. Biogeosciences 9, 1671–1690.
- Kendall, C., Doctor, D.H. and Young, M.B., 2014. Environmental Isotope Applications in Hydrologic Studies. In: Holland, H.D. and Turekian, K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 7, pp. 273-327. Oxford: Elsevier.
- Ransom, K.M., Grote, M.N., Deinhart, A., Eppich, G., Kendall, C., Sanborn, M.E., Souders, A.K., Wimpenny, J., Yin, Q.Z., Young, M., Harter, T., 2016. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers. Water Resour. Res. 52, 5577–5597.
- Schmidt, H., Waller, P., Oppenheimer, J., Badruzzaman, M., Pinzon, J., Jacangelo, J., 2013. No Sweetener in Your Stormwater, but What about Your Reclaimed Water? Florida Water Resour. J. Feb. 2013, 35–47.
- Silvanima, J., Woeber, A., Sunderman-Barnes, S., Copeland, R., Sedlacek, C., Seal, T., 2018. A synoptic survey of select wastewater-tracer compounds and the pesticide imidacloprid in Florida's ambient freshwaters. Environ. Monit. Assess. 190, 435.